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a b s t r a c t 

In response to temperature or pressure changes, many body-centered cubic (bcc) materials undergo 

martensitic bcc-hcp phase transformation, which is known to produce rich martensite microstructure 

with internal twins. Mechanical loading is also known to have a huge impact on martensitic phase trans- 

formation. In this work, we integrate atomistic simulations with theoretical calculations to investigate the 

effect of mechanical loading on the martensite microstructure. The calculations of deformation gradients 

and transformation strains reveal that the { 10 ̄1 1 } transformation twins and { 10 ̄1 2 } transformation twins 

are favored by opposite loading directions. Furthermore, the initial { 112 } twin in the bcc phase is trans- 

formed into { 11 ̄2 2 } and { 11 ̄2 1 } twins after the phase transformation. The results reveal the critical role 

of mechanical loading in the formation of the specific transformation twinning, which could offer a novel 

strategy to engineer twin microstructure using designed thermomechanical processing. 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

At high temperatures, many materials exist in more open struc- 

ures such as the body-centered cubic (bcc) structure, while at 

ow temperatures they transform into more close-packed struc- 

ures such as the hexagonal close-packed (hcp) structure. It is 

ell known that bcc-hcp solid-state phase transformations can be 

nduced by temperature or pressure changes, and exist in many 

aterials such as iron [1,2] , titanium (Ti), zirconium, and many 

lloys [3–5] . Bcc-hcp phase transformation often occurs readily 

hrough collective atomic movements over small distances and is 

hus characterized as martensitic phase transformation. The ori- 

ntation relation involved in a bcc-hcp phase transformation de- 

ends on the phase transformation mechanisms [6–8] . The most 

ell-known Burgers mechanism [9] comprises a shear along the 

1 ̄1 2) bcc plane, which converts the 70 . 53 ◦ angle between two 

 111 〉 bcc directions in the (110) bcc plane to the 60 ◦ angle between 

wo 〈 11 ̄2 0 〉 hcp directions. The shear is accompanied by a shuf- 

e of alternating (110) bcc planes in the opposite [ 1 ̄1 0 ] bcc direc- 

ions [10–12] . Specifically, the Burgers mechanism has the planar 

orrespondence of (01 ̄1 ) bcc ‖ (0 0 01) hcp and the directional corre- 

pondence of [1 ̄1 1 ] bcc ‖ [11 ̄2 0 ] hcp . Another bcc-hcp phase transfor- 

ation mechanism, the Pitsch–Schrader (PS) mechanism, has been 
∗ Corresponding author. 

E-mail address: leicao@unr.edu (L. Cao) . 
1 Both authors contributed equally to this work. 
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bserved experimentally in iron-, zirconium-, and magnesium- 

lloy systems [13–15] . It has the same planar correspondence 

ut a different directional correspondence of [001 ] bcc ‖ [2 ̄1 ̄1 0 ] hcp . 

ther less discussed mechanisms include the Potter and the Rong–

unlop mechanisms [11] . 

Interestingly, several variants as well as complex interface 

tructures could be formed as a product of the martensitic 

cc → hcp transformation. Many previous studies have been 

evoted to the intriguing microstructure of the transformation 

roducts in Ti-based materials [4,16,17] . For example, Baner- 

ee et al. [17] analyzed the formation of complex substructures 

n the hcp martensite formed from the quenching of the high- 

emperature bcc Ti alloy. They proposed the mechanism that the 

artensitic domains nucleate and propagate until reaching each 

ther and form stacking antiphase boundaries with a displacement 

ector of either 1 / 3 〈 10 ̄1 0 〉 or 1 / 6 〈 202 ̄3 〉 . Matsuda et al. [16] used

ransmission electron microscopy to investigate the formation of 

ntiphase boundary-like structures in the B19 martensite of Ti-Pd 

lloy, which is induced by the local heterogeneity of atomic move- 

ents during the B2 to B19 martensitic transformation. Recently, 

ore numerical simulations and theoretical calculations have been 

onducted, which provided even further understanding of the 

ransformation product [18–22] . For instance, Gao et al. [18] used 

olecular dynamics (MD) simulations to investigate the diffuse 

cattering pattern prior to the bcc-hcp martensitic transformation, 

hich was ascribed to the formation of pairs of hcp anti-variants. 

n another study, Shi et al. [20] developed a 3D phase-field model 

o investigate the influence of both external and internal stress on 

https://doi.org/10.1016/j.actamat.2022.118377
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2022.118377&domain=pdf
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Fig. 1. (a) The simulation domain is a polycrystal bcc-Ti obtained from melt-quench 

simulations. The light blue region in (a) corresponds to a thin slice of the simulation 

domain and is shown in (b). The largest grain in the polycrystal is marked as G1. 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Table 1 

The comparison between the lattice constants ob- 

tained from the experiments [42] and the simula- 

tion [35] . 

a bcc (A ◦) a hcp ( A 
◦) c/a 

Experiment 3.26 2.951 1.587 

Simulation 3.251 2.947 1.597 

Difference 0 . 27% 0 . 13% −0 . 63% 
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he variant selection during precipitation in Ti-6Al-4V alloy. They 

ound that uniaxial tensile and compressive stress along [010 ] bcc - 

xis lead to the selection of 8 and 4 out of the 12 hcp variants,

espectively. Furthermore, Wang et al. [19] calculated the shape 

trains created by martensitic bcc → hcp transformation in pure 

i. They found that clusters of three hcp variants could achieve the 

reatest degree of self-accommodation, in which three slip systems 

rovide complementary shear. 

Besides domain boundaries, twin boundaries are another preva- 

ent interface formed during the martensitic bcc-hcp transforma- 

ion. In the theories of martensite crystallography, besides lat- 

ice change, an additional deformation that often induces twin- 

ing is an indispensable component to complete the phase trans- 

ormation. These theories have been successfully applied to pre- 

ict and explain the macroscopic features of phase transforma- 

ion, such as experimentally observed habit planes. It should also 

e noted that there exists a different interpretation on twinning 

n martensitic phase transformation. In particular, twinning does 

ot form due to the additional deformation accompanying the lat- 

ice change, but the two twinned product phases form directly 

rom the parent phase by means of crystallographically equiva- 

ent correspondences [23,24] . Along this view, the terminology of 

ransformation twin is suggested, and fruitful new insights have 

een obtained lately [25–30] . For example, both { 10 ̄1 1 } and { 10 ̄1 2 }
wins were reported as transformation twins in pure Ti and its al- 

oys [23,31–33] . Furthermore, Gao et al. [29] utilized these trans- 

ormation twins formed during cyclic bcc-hcp-bcc phase transfor- 

ation to design multigrain structures. Under uniaxial compres- 

ion, the single-crystal bcc transformed into two hcp variants with 

he { 10 ̄1 2 } twin formed in between. Subsequently, the reheating 

rocess to the bcc-stable regime produced more inclined trans- 

ormation twins and yielded multigrain structures [29] . Addition- 

lly, the cyclic hcp-bcc-hcp transition pathway is infinite because 

he two phases do not have a group-subgroup relation. As a re- 

ult, all the twinning modes in hcp metals were successfully de- 

ived based on certain reversible phase transformations [30] . In the 

D simulation by Chen et al. [28] , they observed that a reversible 

cp-bcc-hcp transformation leads to the formation of { 10 ̄1 2 } twins 

n Ti. In our previous MD simulations of ω-Ti (the high pressure 

hase for Ti with AlB2 structure), we found that stress-induced 

 to hcp martensitic transformation can produce four types of 

ransformation twins, namely, { 10 ̄1 2 } , { 10 ̄1 1 } , { 11 ̄2 2 } , and { 11 ̄2 1 }
wins, each formed under different loading directions [27] . This 

ew knowledge of transformation twins can guide the experimen- 

al characterization of the complicated and dense microstructure of 

hock/pressure recovered ω/hcp structures. In this study, we take a 

tep further to investigate the role of the mechanical loading in the 

ctivation of different phase transformation mechanisms, and ac- 

ordingly the formation of different transformation twins. We dis- 

over tension/compression asymmetry in the transformation twins, 

hich is determined by the correlation between the loading direc- 

ion and the transformation strain. Furthermore, our MD simula- 

ions and theoretical calculations allow us to uniquely determine 

he twinning components of each transformation twin. 

This paper is organized as follows. Section 2 describes the 

ethods for the atomistic simulations. Section 3 shows the MD 

imulations in polycrystal Ti, the strain calculation for the ten- 

ion/compression asymmetry, and the twinning mode analysis 

or each twin observed. Finally, we present the conclusions in 

ection 4 . 

. Methods 

In the current study, the LAMMPS package [34] is used to 

onduct the molecular dynamics (MD) simulations. The initial 

tructure ( 29 . 5 × 25 . 5 × 24 . 1 nm 

3 ) contains one million Ti atoms
2 
ith periodic boundary conditions applied to all three dimensions. 

he embedded-atom method potential developed by Mendelev 

t al. [35] is utilized to model the interactions between Ti atoms. 

he time-step size of the MD simulations is 1 fs. Initially, the 

toms are assigned with random velocities following the Gaussian 

istribution, corresponding to an average temperature of 10 K. Dur- 

ng the melting process, the Ti structure is heated up to 2266 K, 

hich is higher than the melting point of 1923 K, to ensure the 

omplete melting. Then the structure is maintained at 2266 K 

or 500 ps and subsequently quenched to 10 K. The quench- 

ng process produces a metastable bcc-Ti polycrystal ( Fig. 1 ) that 

s stabilized by the fast quenching rate and the abundant grain 

oundaries and twin boundaries. Afterwards, the structure is re- 

axed at 10 K and 0 Pa in the isothermal-isobaric ensemble us- 

ng the Nose-Hoover thermostat [36] and the Parrinello–Rahman 

arostat [37] for 100 ps. For the deformation process, the uniax- 

al loading is applied to the relaxed bcc-Ti polycrystal at a con- 

tant temperature of 600 K, unless otherwise stated. Theoretically, 

 high temperature close to the phase boundary is ideal to observe 

he bcc-hcp phase transition. In this work, a lower temperature 

f 600 K is chosen to avoid thermal fluctuation that undermines 

lear visualization of the microstructure evolution. A similar strat- 

gy was adopted in previous MD simulations [38] . In addition, ex- 

ensive simulations with various strain rates have been conducted 

n the range of 10 8 s −1 to 10 9 s −1 . Indeed, the results are found

o be strain-rate independent. Finally, OVITO [39] and the common 

eighbor analysis [40,41] are used to identify the crystal structure, 

ith bcc, hcp, face-centered cubic (fcc), and amorphous phases de- 

oted in red, cyan, green, and yellow, respectively. 

The ratio of bcc and hcp lattice parameters is important for 

train accommodation. Therefore, the lattice parameters from the 

imulation [35] and experiments [42] are compared in Table 2 . It 

an be seen that the differences are not significant ( < 1% ). There-

ore, we believe the strain accommodation during the phase transi- 

ion in the MD simulation is close to the experimental conditions. 

. Results 

The initial polycrystal is in the metastable bcc phase. With in- 

reasing strain, the metastable bcc phase transforms into the stable 
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Fig. 2. The formation process of { 10 ̄1 1 } twins during bcc-hcp phase transition under x -tension. (a) The grain G1 initially exists in bcc phase. (b) The nucleation of the first 

variant hcp4 in the top left and bottom right regions of grain G1 at the strain of 5.68%. (c) The nucleation of the second variant hcp1 at the strain of 6.2%. (d) The formation 

of { 10 ̄1 1 } twins between hcp4 and hcp1 at the strain of 8.4%. (e) A schematic illustrating the orientation relation of the bcc-hcp phase transformation. 
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F bcc 
cp phase, forming various martensite microstructure with inter- 

al twins. Interestingly, the types of internal twins depend on the 

oading direction, which is most obvious in the largest grain G1 in 

he polycrystal ( Fig. 1 (b)). Therefore, the microstructure evolution 

n grain G1 will be shown first, followed by the loading direction 

ffect on the twin formation, and finally the analysis of the twin- 

ing modes. 

We label the six hcp variants according to which bcc plane 

heir basal plane originates from. In this sense, the basal planes 

f variants hcp1 ∼hcp6 originate from the bcc planes (011), (0 ̄1 1) , 

101), (10 ̄1 ) , (110), and ( ̄1 10) , respectively. Each pair of hcp vari-

nts, hcp1/hcp2, hcp3/hcp4, and hcp5/hcp6 present mirror symme- 

ry. Moreover, a three fold symmetry also exists between the hcp 

ariants. For example, hcp5/hcp1/hcp4 shows a three-fold symme- 

ry around [1 ̄1 1 ] bcc axis, and hcp5/hcp2/hcp3 shows a three-fold 

ymmetry around [ 11 ̄1 ] bcc axis. 

.1. Molecular dynamics simulations 

.1.1. The formation of { 10 ̄1 1 } twin 

Fig. 2 shows the microstructure evolution in grain G1 under x - 

xis tension. As shown in Fig. 2 (b), the phase transition initiates 

imultaneously from the top left and bottom right regions of grain 

1, both forming the same hcp phase (hcp4). At a strain of 6.2%, 

 different hcp phase (hcp1) forms in the middle of grain G1 and 

s sandwiched between the two regions of previously formed hcp4 

 Fig. 2 (c)). In particular, the two newly formed hcp phases—hcp4 

nd hcp1—are misorientated by 57 ◦ around a common 〈 11 ̄2 0 〉 hcp 

xis, which corresponds to a { 10 ̄1 1 } twin relation in hcp materials.

ater, two { 10 ̄1 1 } twin boundaries indeed are formed in between 

cp4 and hcp1 ( Fig. 2 (d)). 

Furthermore, the crystallography of the above phase transition 

nd twin formation process is examined. Theoretically, the bcc- 

cp phase transition can form twelve hcp variants, while grain 

1 forms two hcp variants under x -tension. Specifically, the basal 

lanes of hcp4 and hcp1 originate from (10 ̄1 ) bcc and (011) bcc 

lanes in grain G1 that share a common [ 1 ̄1 1 ] bcc axis, as illustrated 

n Fig. 2 (e). Therefore, the phase transition follows the Burgers 

echanism, { 110 } bcc ‖ { 0 0 01 } hcp and [ 1 ̄1 1 ] bcc ‖ [11 ̄2 0 ] hcp [9] . The

rientation relation in each hcp variant is summarized in Eq. (1) . 

cc → hcp4 : (10 ̄1 ) bcc ‖ (0 0 01) hcp4 , [1 ̄1 1 ] bcc ‖ [11 ̄2 0 ] hcp4 

cc → hcp1 : (011) bcc ‖ (0 0 01) hcp1 , [1 ̄1 1 ] bcc ‖ [11 ̄2 0 ] hcp1 

(1) 
3 
.1.2. The formation of { 10 ̄1 2 } twin 

We find that the twinning mode changes when changing the 

oading from x -tension to x -compression. Fig. 3 shows the mi- 

rostructure evolution in grain G1 under x -compression. The phase 

ransition forms one hcp phase (hcp6) at 5.8% strain ( Fig. 3 (b)). 

hen the strain reaches 8%, the left region of grain G1 transforms 

nto another hcp phase (hcp5) ( Fig. 3 (c)). At 11.6% strain, hcp5 and

cp6 meet each other and form a { 10 ̄1 2 } twin, which is character-

zed by a 86 ◦ misorientation across the 〈 11 ̄2 0 〉 zone axis ( Fig. 3 (d)).

The orientation relation of the above phase transition and 

win formation process is further examined. Specifically, the basal 

lanes of hcp5 and hcp6 originate from (110) bcc and (1 ̄1 0) bcc 

lanes in grain G1 that share a common [ 001 ] bcc axis, as schemati- 

ally illustrated in Fig. 3 (e). In other words, the bcc-hcp phase tran- 

ition under x -tension follows the Pitsch–Schrader (PS) orientation 

elation, { 110 } bcc ‖ (0 0 01) hcp and [0 01 ] bcc ‖ [2 ̄1 ̄1 0 ] hcp . The orienta-

ion relation in each hcp variant is shown in Eq. (2) . 

cc → hcp 6 : (1 1 0) bcc ‖ (0 0 01) hcp 6 , [001] bcc ‖ [2 1 1 0] hcp 6 

bcc → hcp 5 : (110) bcc ‖ (0 0 01) hcp 5 , [001] bcc ‖ [2 1 1 0] hcp 5 (2) 

.1.3. The formation of { 11 ̄2 2 } twin 

In the previous two sections, we focused on the largest grain 

1 in the bcc polycrystal. It should be noted that the polycrystal 

lso contains { 112 } bcc twins that were formed during the quench- 

ng process. The effect of these initial twins on the phase trans- 

ormation will be investigated next. As shown in Fig. 4 (a), the 

wo bcc regions forming the initial { 112 } bcc twin are labelled 

cc1 and bcc2. Under x -axis tension, the bcc phases start to un- 

ergo martensitic phase transformation at 6 . 04% strain ( Fig. 4 (b)). 

he bcc1 and bcc2 transform completely into hcp phases at 7 . 2% 

train ( Fig. 4 (c)) and 10 . 24% strain ( Fig. 4 (d)), respectively. Fig. 4 (e)

chematically shows the phase transformation in the zone axis 

f [ 011 ] bcc ‖ [10 ̄1 0 ] hcp . Notably, the bcc-hcp phase transformation 

onverts the initial { 112 } bcc twin into a { 11 ̄2 2 } hcp twin. In addi-

ion, it should be noted that the misorientation angle of { 112 } bcc 

win ( 70 ◦ across [ 011 ] bcc ) is close to that of the { 11 ̄2 2 } hcp twin ( 65 ◦

cross [ 10 ̄1 0 ] hcp ), rendering the above twin transformation feasible. 

.1.4. The formation of { 11 ̄2 1 } twin 

Interestingly, the same initial { 112 } bcc twin will be con- 

erted to different hcp twins depending on the loading direction. 

ig. 5 shows the microstructure evolution in the { 112 } twinned 
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Fig. 3. The formation process of a { 10 ̄1 2 } twin during the bcc-hcp phase transition under x -compression. (a) The same grain G1 as in Fig. 2 . The formation of (b) the first 

hcp phase (hcp6) and (c) another hcp variant (hcp5). (d) The growth of two hcp variants leads to the formation of an incoherent { 10 ̄1 2 } twin. (e) A schematic illustrating 

the orientation relation of the bcc-hcp phase transformation. 

Fig. 4. The bcc-hcp phase transformation converts a { 112 } bcc twin into a { 11 ̄2 2 } hcp twin under x -tension. (a) The initial bcc grain contains a { 112 } bcc twin. (b) The nucleation 

of two hcp variants at the strain of 6 . 04% . (c) The growing hcp phase consumes bcc1. (d) The second hcp variant consumes bcc2, forming a coherent { 11 ̄2 2 } hcp twin boundary. 

(e) A schematic illustrating the orientation relation of the bcc-hcp phase transformation. 

Fig. 5. The bcc-hcp phase transformation converts a { 112 } bcc twin into a { 11 ̄2 1 } hcp twin under x -compression. (a) The grain contains a { 112 } bcc twin between bcc1 and bcc2. 

(b) The formation of the hcp phases at 4 . 4% strain. (c-d) The growth of the two newly formed hcp phases and the formation of the { 11 ̄2 1 } hcp twin. (e) A schematic illustrating 

the orientation relation of the bcc-hcp phase transformation. 

4 
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Fig. 6. The orientation of the Cartesian coordinate basis e i and the reference bcc lattice. (a) PS mechanism: the top row shows one (110) plane and one (1 ̄1 0) plane involved 

in the { 10 ̄1 2 } hcp twin case; the bottom row shows the comparison between bcc (110) plane and hcp basal plane in PS mechanism. (b) Burger mechanism: the top row shows 

one (110) plane in bcc unit cell and the bottom row shows the comparison between bcc (110) plane and hcp basal phase in Burgers mechanism. 
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s

rain under x -axis compression. The same labeling rule of bcc1 

nd bcc2 are adopted in Fig. 5 (a) because this is the same grain

s in the previous case of x -tension. At 4 . 4% strain, a new hcp

hase nucleates inside bcc1. When the strain reaches 5 . 12% , an- 

ther hcp variant nucleates inside bcc2 near the initial { 112 } bcc 

win boundary ( Fig. 5 (b)). Both hcp variants keep growing with in- 

reasing strain ( Fig. 5 (c)). Finally, the original { 112 } bcc twin trans-

orms into a { 11 ̄2 1 } hcp twin, as shown in Fig. 5 (d). The phase tran-

itions follow the plane correspondence of { 110 } bcc ‖ { 0 0 01 } hcp and

he direction correspondence of [ ̄1 13 ] bcc ‖ [01 ̄1 0 ] hcp . This process 

s feasible since the angle between the two { 110 } bcc planes ( 35 ◦

cross [ ̄1 13 ] bcc axis) is close to the misorientation angle ( 35 ◦ across 

 01 ̄1 0 ] hcp ) of { 11 ̄2 1 } hcp twin in hcp materials. 

.2. The effect of the loading direction on the twin formation 

In hcp metals, { 10 ̄1 1 } hcp twin is known as compression 

win and { 10 ̄1 2 } hcp twin is known as tension twin. Specifically, 

 10 ̄1 1 } hcp twin forms when the c -axis is under compression; 

 10 ̄1 2 } hcp twin forms when the c -axis is under tension. It is in-

eresting to note similar directional dependence in our MD sim- 

lations: the obtained internal twins change from { 10 ̄1 1 } hcp to 

 10 ̄1 2 } hcp twins when the loading direction changes from x -tension 

o x -compression. However, it may not be appropriate to apply the 

irectional dependence in hcp materials directly to rationalize our 

bservation, because the loading in this work is applied to the bcc 

olycrystal. In this section, we will calculate the deformation gra- 

ient associated with the phase transformation to understand the 

irectional dependence observed in our MD simulations. 

.2.1. Unit cell kinematics of bcc → hcp transformation 

To understand the impact of loading on the hcp variants and 

he twins formed in the bcc-hcp phase transition shown in the MD 

imulations, we make use of the deformation gradient F associated 

ith the unit cell kinematics throughout this transformation. We 

tart by calculating F for the PS mechanism, and then derive F for 

he Burgers mechanism, since both mechanisms are observed in 

ur simulations. 

As shown in Fig. 6 , we define a standard rectangular Cartesian 

oordinate basis aligned with the reference bcc lattice, so that e i 
s an orthonormal basis, i = { 1 , 2 , 3 } , in the [100], [010] and [001]

irections, respectively. We further define v 1 = (e 1 − e 2 ) / 
√ 

2 and 

 2 = (e 1 + e 2 ) / 
√ 

2 , pointing respectively in the [ ̄1 10] and [ 110] di-

ections. A referential bcc orthogonal basis is then G = 

√ 

2 a v , 
1 0 1 

5 
 2 = 

√ 

2 a 0 v 2 , and G 3 = a 0 e 3 , where a 0 = 3 . 31 Å is the bcc-Ti lat-

ice parameter. The reciprocal basis G 

i is defined by the relation 

 i · G 

j = δ j 
i 
, where δ j 

i 
is a Kronecker delta. 

Under PS mechanism ( Fig. 6 (a)), choosing the particular hcp5 

ariant with a basal plane originating from (110) bcc plane, the 

ransformation induces the following deformed basis: g 1 = 

√ 

3 a v 1 , 

 2 = c v 2 , and g 3 = a e 3 , where a = 2 . 95 Å and c = 4 . 68 Å are the

cp-Ti lattice parameters. The deformed basis g i for different hcp 

ariants can be similarly calculated; for example, g 1 = c v 1 , g 2 =
 

3 a v 2 , and g 3 = a e 3 for the hcp6 variant, whose basal plane orig-

nates from the (1 ̄1 0) bcc plane. This allows us to calculate the de- 

ormation gradient F = g i � G 

i for a specific variant of the bcc-hcp 

ransformation. Eq. (3) lists the components in matrix form F i j for 

ll the six bcc → hcp transformations, in the standard basis. 

 ij | PS 
hcp 1 

= 

1 
2 

⎡ 

⎢ ⎣ 

2 a 
a 0 

0 0 

0 

a 
a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 
− a 

a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 

0 − a 
a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 

a 
a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 

⎤ 

⎥ ⎦ 

, 

F ij | PS 
hcp 2 

= 

1 
2 

⎡ 

⎢ ⎣ 

2 a 
a 0 

0 0 

0 

a 
a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 

a 
a 0 

√ 

3 
2 

− c √ 

2 a 0 

0 

a 
a 0 

√ 

3 
2 

− c √ 

2 a 0 

a 
a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 

⎤ 

⎥ ⎦ 

, 

 ij | PS 
hcp 3 

= 

1 
2 

⎡ 

⎢ ⎣ 

a 
a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 
0 − a 

a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 

0 

2 a 
a 0 

0 

− a 
a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 
0 

a 
a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 

⎤ 

⎥ ⎦ 

, 

F ij | PS 
hcp 4 

= 

1 
2 

⎡ 

⎢ ⎣ 

a 
a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 
0 

a 
a 0 

√ 

3 
2 

− c √ 

2 a 0 

0 

2 a 
a 0 

0 

a 
a 0 

√ 

3 
2 

− c √ 

2 a 0 
0 

a 
a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 

⎤ 

⎥ ⎦ 

, 

 ij | PS 
hcp 5 

= 

1 
2 

⎡ 

⎢ ⎣ 

a 
a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 
− a 

a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 
0 

− a 
a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 

a 
a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 
0 

0 0 

2 a 
a 0 

⎤ 

⎥ ⎦ 

, 

F ij | PS 
hcp 6 

= 

1 
2 

⎡ 

⎢ ⎣ 

a 
a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 

a 
a 0 

√ 

3 
2 

− c √ 

2 a 0 
0 

a 
a 0 

√ 

3 
2 

− c √ 

2 a 0 

a 
a 0 

√ 

3 
2 

+ 

c √ 

2 a 0 
0 

0 0 

2 a 
a 0 

⎤ 

⎥ ⎦ 

. 

(3) 

Since the deformation gradient associated with the bcc → hcp 

ransformation only changes by a rotation between the PS and 

urgers mechanisms, typically only the right stretch tensor as- 

ociated with Burgers is discussed [1,43] , which is the same for 
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oth deformation paths. However, it is important to keep track 

f rotations with respect to load directions, since they change F 

nd can have an impact on certain (non-referential) measures of 

train. For the Burgers mechanism ( Fig. 6 (b)), one diagonal of the 

 110 } bcc plane, which transforms into (0 0 01) hcp , rotates by θ =
0 . 53 ◦, which is accompanied by lattice stretching. For example, 

he present basis for hcp5 is g 1 = 

√ 

3 a ( cos θ v 1 − sin θ e 3 ) , g 2 = c v 2 ,

nd g 3 = a ( sin θ v 1 + cos θ e 3 ) . As a comparison, the components F i j 

f the deformation gradient for hcp5 and hcp6 under the Burgers 

echanism in standard basis are listed in Eq. (4) , which presents 

dditional terms as a function of θ when compared to Eq. (3) . 

ote that F is no longer symmetric for the Burgers mechanism 

ince rotations are present, Q 
 = I . 

 ij | Burg ers 

hcp 5 
= 

1 

2 

⎡ 

⎢ ⎣ 

a cos θ
a 0 

√ 

3 
2 

+ 

c √ 
2 a 0 

− a cos θ
a 0 

√ 

3 
2 

+ 

c √ 
2 a 0 

2 a sin θ√ 
2 a 0 

− a cos θ
a 0 

√ 

3 
2 

+ 

c √ 
2 a 0 

a cos θ
a 0 

√ 

3 
2 

+ 

c √ 
2 a 0 

− 2 a sin θ√ 
2 a 0 

− a 
√ 

3 sin θ
a 0 

a 
√ 

3 sin θ
a 0 

2 a 
a 0 

⎤ 

⎥ ⎦ 

, 

(4) 

(4) 

 ij | Burg ers 

hcp 6 
= 

1 

2 

⎡ 

⎢ ⎣ 

a cos θ
a 0 

√ 

3 
2 

+ 

c √ 
2 a 0 

a cos θ
a 0 

√ 

3 
2 

− c √ 
2 a 0 

− 2 a sin θ√ 
2 a 0 

a cos θ
a 0 

√ 

3 
2 

− c √ 
2 a 0 

a cos θ
a 0 

√ 

3 
2 

+ 

c √ 
2 a 0 

− 2 a sin θ√ 
2 a 0 

a 
√ 

3 sin θ
a 0 

a 
√ 

3 sin θ
a 0 

2 a 
a 0 

⎤ 

⎥ ⎦ 

. 

(4) 

.2.2. X -tension: { 10 ̄1 1 } twin 

After calculating the deformation gradient, we can further com- 

are the strain associated with the phase transformation with the 

pplied loading, to examine the directional dependence observed 

n our MD simulations. By the polar decomposition, the defor- 

ation gradient can be decomposed as F = Q · U = V · Q , where

 and V are symmetric positive definite stretch tensors, and 

 is an orthogonal tensor, which allows us to define the Biot 

train [44] E Biot = U − I . Other measures of strain include the Bell

train E Bell = V − I , and, for small deformations, the small strain 

ensor ε = (1 / 2)(F + F � − 2 I ) . For the bcc to hcp F based on the

S mechanism, Q is the identity (no rotation) and F = U = V . The

ight stretch U for the Burgers mechanism coincides with the one 

rom PS, but since rotations are present for Burgers, both F and the 

eft stretch V change. Now, define d as the unit vector in the load

irection. When the strain e d = (E Biot · d ) · d > 0 for a specific vari-

nt, we say the transformation is kinematically preferred by ten- 

ion in the d direction accordingly to the Biot measure, and by 

ompression in the opposite case e d < 0 . 

In the x -tension case ( Fig. 2 ) starting from a single bcc grain,

he tensile load is approximately aligned with [ 1 ̄1 1 ] bcc axis. There- 

ore, we set d as the unit vector in this direction and calculate the 

train e d for the six hcp variants based on F for the Burgers mech-

nism Eq. (4) . We find that only three hcp variants present posi- 

ive e d strains: hcp1, hcp4, and hcp5, with e d = 2 . 48 × 10 −2 . These

ariants can combine to form { 10 ̄1 1 } compression twins, which 

grees with our observation in Fig. 2 . In the MD simulations, hcp4 

orms first, followed by hcp1 and twinning, but we did not find 

he formation of hcp5. A possible reason is that the load direction 

resents a small deviation with respect to [ 1 ̄1 1 ] bcc , which intro- 

uces bias in the results. While the discussed strain measures co- 

ncide for the PS mechanism, it is worth noting that for the Burgers 

echanism this analysis does depend on the choice of strain. For 

xample, only hcp1 presents a positive strain in the [ 1 ̄1 1 ] bcc direc- 

ion with respect to the Bell or small strain tensors, whereas for 

cp4 and hcp5 strains are negative but small in magnitude com- 

ared to the other variants. 

After revealing that the loading of x -tension favors the for- 

ation of hcp4 and hcp1, we will further examine the crystallo- 

raphic relation between the two hcp variants. First, the (10 ̄1 ) 
bcc 

6

nd (011) bcc planes—corresponding to the basal planes of hcp4 and 

cp1—form an angle of 60 ◦. Since this angle would remain approx- 

mately the same during the bcc-hcp phase transition, hcp4 and 

cp1 should have a misorientated angle around 60 ◦. Second, the 

10 ̄1 ) bcc and (011) bcc planes share a common [ 1 ̄1 1 ] bcc axis, which 

ater transforms into a common [ 11 ̄2 0 ] hcp shared between hcp4 

nd hcp1. In other words, the misorientation angle and common 

one axis agree with those for { 10 ̄1 1 } twin. Thus, { 10 ̄1 1 } twin is

xpected to form between hcp4 and hcp1. 

.2.3. X -compression: { 10 ̄1 2 } twin 

As for the case of x -compression ( Fig. 3 ) starting from a single

cc grain, the reference lattice has its [ 001 ] bcc closely aligned with 

he out of plane x -direction of the compression load. For both hcp5 

nd hcp6 variants, based on either PS (3) or Burgers (4) mecha- 

ism kinematics, U 33 = a/a 0 ≈ 0 . 89 and e d = −1 . 09 × 10 −1 , so that

he referential bcc lattice has to compress in the d = [001 ] bcc di- 

ection in order to transform in these hcp variants. In contrast, 

he other four hcp variants present a positive normal Biot strain 

long [ 001 ] bcc . Therefore, the loading of x -compression is expected 

o favor the formation of hcp5 and hcp6 variants. This observation 

olds regardless of the choice of strain for this particular load di- 

ection. 

Further examination of the crystallographic relation reveals that 

 10 ̄1 2 } twin will form in between hcp5 and hcp6. First, (110) bcc 

nd ( ̄1 10) bcc planes—corresponding to the basal planes of hcp5 and 

cp6—form an angle of 90 ◦, which would remain during the bcc- 

cp phase transition and hcp5 and hcp6 are approximately misori- 

ntated by 90 ◦. Second, the (110) bcc and ( ̄1 10) bcc planes share a 

ommon [ 001 ] bcc , which under the PS mechanism transforms into 

 common [ 11 ̄2 0 ] hcp shared between hcp5 and hcp6. As the mis- 

rientation angle and the common zone axis agree with those in 

 10 ̄1 2 } twin, { 10 ̄1 2 } twin is expected to form between hcp5 and

cp6, which agrees with our MD simulation shown in Fig. 3 . 

.2.4. X -tension: { 11 ̄2 2 } twin 

So far we have evaluated the role of the load on transforma- 

ions starting from a single bcc grain. When the reference mi- 

rostructure contains a { 112 } bcc twin, the analysis becomes more 

ntricate since one needs to account for a pre-strained bcc twin. 

s discussed by Gao et al. [45] , when a bcc transforms into a bcc

win through a hcp-related path, there are twelve (non-identity) 

attice correspondences leading to distinct deformation gradients 

 { 112 } twin . For the simulation in Fig. 4 , a tensile load is applied in

he [ 011 ] bcc direction, and the initial { 112 } bcc microstructure trans- 

orms into a { 11 ̄2 2 } hcp twin. 

From Eq. (3) , we find that the only hcp variant favored by a 

ensile load in the d direction is hcp2, with e = 9 . 15 × 10 −2 . This

orresponds to the transformation undergone by the parent strain- 

ree bcc lattice in Fig. 4 , which becomes hcp2 with F = F | PS 
hcp2 

. In

his scenario we will assume the PS mechanism a priori, since the 

ight stretch for both mechanisms is the same and this simpli- 

es the analysis. However, the total deformation gradient F ∗ of the 

cc twin transformation needs to account for the initial F { 112 } twin , 

o that F ∗ = F | PS 
hcp2 

· F { 112 } twin . Since only hcp2 is preferred by the

oad, we assume a { 112 } bcc twin → hcp2 transformation, where 

 { 112 } twin has the following components 

 ij | { 112 } twin = 

[ 

0 . 5 −0 . 75 0 . 75 

0 . 5 0 . 75 0 . 25 

−0 . 5 0 . 25 0 . 75 

] 

. (5) 

his leads to a resulting F ∗ with a Biot strain e ∗
d 

= 9 . 15 × 10 −2 , also

avored by the tensile load. 
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Fig. 7. Transformation of the { 10 ̄1 1 } twin (top row) and { 10 ̄1 2 } twin (bottom row) 

to single-crystal bcc phase after increasing the temperature from 600 K to 1200 K, 

confirming that they are the transformation twins associated with bcc → hcp phase 

transformation. 
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Fig. 8. Transformation of the { 11 ̄2 2 } twin (top row) and { 11 ̄2 1 } twin (bottom row) 

to { 112 } bcc twin after increasing the temperature from 600 K to 1200 K. 
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.2.5. X -compression: { 11 ̄2 1 } twin 

The last case we presented was the { 11 ̄2 1 } twin formation 

tarting from a { 112 } bcc twin. The analysis follows the same steps 

s in the { 11 ̄2 2 } twin case, where the difference now is that we

ave a compressive load in the [ ̄1 13 ] bcc direction. Calculating the 

iot strains in this direction based on the deformation gradients 

rom Eq. (3) , we find that only hcp5 with e d = −7 . 2 × 10 −2 and

cp6 with e d = −8 . 9 × 10 −2 are favored by the compressive load. 

The numerical results in Fig. 5 suggest that the parent strain- 

ree bcc lattice transforms into hcp5, with F = F | PS 
hcp5 

, whereas the

ther lattice forming the twin would come from a different variant. 

s in the { 11 ̄2 2 } case, this variant originates from a pre-strained

cc twin, with a total deformation gradient F ∗ = F | PS 
hcp6 

· F { 112 } twin . 

ince hcp6 is the other variant preferred by the load, we assume a 

cc twin → hcp6 transformation, where F { 112 } twin components are 

he same as in Eq. (5) . This leads to a resulting F ∗ with a Biot

train e ∗
d 

= −8 . 1 × 10 −2 also favored by the compressive load. 

.3. The twinning mode analysis 

So far, our MD simulations of bcc → hcp phase transition cap- 

ured the formation of { 10 ̄1 1 } , { 10 ̄1 2 } , { 11 ̄2 2 } and { 11 ̄2 1 } twins,

hich are also known as the four deformation twinning modes 

n hcp materials [46] . It should be noted that both phase transi- 

ions and mechanical loadings could lead to twin formation. The 

ormer leads to transformation twins and the latter leads to de- 

ormation twins [47–49] . The twin components for deformation 

wins are well-established [46] , while that for the transformation 

win is still unclear [47–49] , especially on the relation between the 

ransformation twins and deformation twins. 

.3.1. Reverse phase transition 

To unambiguously determine the transformation twin, we fur- 

her induce the reverse hcp → bcc transformation by heating up 

hese twinned structures to 1200 K. If the twin is the direct prod- 

ct of bcc → hcp transformation, the reverse hcp → bcc trans- 

ormation will eliminate the twin boundary and lead to a single 

cc phase. Figs. 7 and 8 demonstrate the microstructure evolu- 

ion of the four types of twins during the heating process. For the 

 10 ̄1 1 } twin, only one bcc phase nucleates from the { 10 ̄1 1 } twin

oundaries ( Fig. 7 (b)) and then consumes the entire twinned grain 

 Fig. 7 (c)). Similarly, the same phenomenon occurs in the { 10 ̄1 2 }
winned case ( Fig. 7 (d)–(f)). In contrast, heating up the { 11 ̄2 2 } twin

eads to the nucleation of two different bcc phases and the forma- 

ion of a { 112 } twin ( Fig. 8 (c)), so does the case of the { 11 ̄2 1 } twin

 Fig. 8 (f)). To conclude, only { 10 ̄1 1 } and { 10 ̄1 2 } twins are transfor-
7

ation twins associated with bcc → hcp phase transformation. The 

ormation of { 11 ̄2 2 } and { 11 ̄2 1 } twins is ascribed to the existing

 112 } twin in the parent bcc phase, formed before the bcc → hcp

hase transformation. 

Previously, { 10 ̄1 1 } twins were identified as transformation 

wins in pure Ti, caused by quenching-induced bcc → hcp phase 

ransformation [23,31,32] . In Ti alloy [33] , quenching-induced 

 10 ̄1 2 } transformation twins were reported. Our MD simula- 

ions agree with the experimental observation of transformation 

wins in Ti and its alloys. More importantly, our analysis in 

ection 3.2 reveals that the activation of the specific transforma- 

ion twinning mode is selected by the applied mechanical load- 

ng. This new knowledge could offer a novel strategy for engineer- 

ng twin microstructure using designed thermomechanical pro- 

essing [21,22,29] . Finally, it should be noted that this is not spe- 

ific to Ti and its alloys, and should apply generally to other mate- 

ial systems involving bcc → hcp phase transformation. 

.3.2. Theoretical calculation 

Last but not the least, the twinning mode of the transforma- 

ion twins will be examined to understand its relevance to the de- 

ormation twinning modes in hcp metals. In Section 3.2 we were 

ble to identify the deformation gradients associated with the dif- 

erent hcp variants observed in the resulting microstructure. We 

an now employ these tensors to calculate the twinning elements 

etween each pair of variants, and compare with the MD results. 

hese elements are the solution of the twinning equation [50] , a 

inematic compatibility condition between two regions presenting 

 jump in the deformation gradient and stretch. If a twin is formed 

etween variants I and J, with right stretch tensors U I and U J , then 

he twinning equation takes the form 

 · U I − U J = a � n , (6) 

or some vector a and a unit normal n to the interface. The mis- 

rientation between the neighboring lattices is captured by the ro- 

ation tensor R . 

Once the stretch tensors U I and U J are extracted from the de- 

ormation gradients, a pair of solutions { a , n , R } can be calculated

rom (6) based on the algorithm detailed by Bhattacharya [51] . In 

he present case, n can be identified with the normal for the shear 

lane K in the hcp lattice, whereas the direction of shear η and 

hear magnitude s are calculated as 

= 

a 

| a | , s = | a | | U 

−1 
J · n | . (7) 

ollowing this approach, we use the deformation gradients pre- 

icted in Section 3.2 to calculate the twinning elements for each 

ase. 
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Table 2 

Summary of the twinning modes observed after bcc → hcp phase transformation. ∗ The angles between bcc planes 

involved in the twin formation process is taken as an acute angle to be consistent with the definition of the mis- 

orientation angles of the twins. 

Twin type bcc → { 10 ̄1 1 } hcp bcc → { 10 ̄1 2 } hcp { 112 } bcc → { 11 ̄2 2 } hcp { 112 } bcc → { 11 ̄2 1 } hcp 

K 2 plane { 0 . 24 ̄1 0 . 76 0 . 28 } { ̄1 012 } { ̄1 ̄1 2 ̄6 } { 0 . 97 0 . 66 1 . 62 ̄1 } 
shear s 0.343 0.176 0.152 0.514 

loading direction x -tension x -compression x -tension x -compression 

zone axis [ 1 ̄1 1 ] bcc ‖ [11 ̄2 0 ] hcp [ 001 ] bcc ‖ [2 ̄1 ̄1 0 ] hcp [ 011 ] bcc ‖ [10 ̄1 0 ] hcp [ ̄1 13 ] bcc ‖ [01 ̄1 0 ] hcp 

bcc-hcp pathway Burgers PS PS Burgers 

bcc planes angle ∗ 60 ◦ 90 ◦ 70 ◦ 35 ◦

twin angle 57 ◦ 85 ◦ 65 ◦ 35 ◦
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1. x -tension along [ 1 ̄1 1 ] bcc : from F | PS 
hcp1 

and F | PS 
hcp4 

we find 

s = 0 . 343 , 

K 1 = { 10 ̄1 ̄1 } , η1 = 〈 0 . 38 1 0 . 62 0 . 25 〉 , 
K 2 = { 0 . 24 1̄ 0 . 76 0 . 28 } , η2 = 〈 ̄5 143 〉 . 

2. x -compression along [ 001 ] bcc : from F | PS 
hcp5 

and F | PS 
hcp6 

we find 

s = 0 . 176 , 

K 1 = { 0 ̄1 12 } , η1 = 〈 01 ̄1 1 〉 , 
K 2 = { 01 ̄1 2 } , η2 = 〈 0 ̄1 11 〉 . 

3. x -tension along [ 011 ] bcc : from F | PS 
hcp2 

and F | PS 
hcp2 

· F { 112 } twin we 

find 

s = 0 . 152 , 

K 1 = { ̄1 ̄1 22 } , η1 = 〈 11 ̄2 3 〉 , 
K 2 = { ̄1 ̄1 2 ̄6 } , η2 = 〈 11 ̄2 ̄1 〉 . 

4. x -compression along [ ̄1 13 ] bcc : from F | PS 
hcp5 

and F | PS 
hcp6 

· F { 112 } twin 

we find 

s = 0 . 514 , 

K 1 = { ̄1 2 ̄1 ̄1 } , η1 = 〈 0 . 83 0 . 17 1̄ 0 . 51 〉 , 
K 2 = { 0 . 97 0 . 66 1 . 62 1̄ } , η2 = 〈 5 ̄7 23 〉 . 

Therefore, based on the deformation gradients and the respec- 

ive hcp variants favored by the load in each case, we find twin- 

ing planes K 1 that exactly match the ones formed in the MD 

imulations. In particular, the { 10 ̄1 2 } transformation twin is deter- 

ined to resemble the { 10 ̄1 2 } deformation twinning mode com- 

on to all hcp metals. The { 11 ̄2 2 } twin inherited from the { 112 } bcc 

win is the same as the { 11 ̄2 2 } extension twin formed through

on-cozone { 10 ̄1 2 } − { 01 ̄1 2 } twin-twin interaction [38] . Because

hese two twinning modes correspond to the deformation twin- 

ing modes, their dichromatic complex patterns are shown in 

ig. 9 . As for the { 10 ̄1 1 } and the { 11 ̄2 1 } twins, the twinning ele-

ents calculation clearly demonstrates that they have irrational K 
2 

ig. 9. The dichromatic complex of (a) { 10 ̄1 2 } and (b) { 11 ̄2 2 } twins. The top open 

ymbols and bottom gray symbols represent the parent, while the top gray sym- 

ols represent the twin. The blue arrows represent the atomic shuffle direction and 

he red atoms represent the shear direction. K 1 is the twinning plane and K 2 is 

he conjugate twinning plane. (For interpretation of the references to color in this 

gure legend, the reader is referred to the web version of this article.) 
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8 
lanes and η1 direction, which is different from the well-known 

 10 ̄1 1 } and { 11 ̄2 1 } deformation twinning modes. While these solu-

ions for the twinning equation were previously discussed in Gao 

t al. [30] , we here show the effect of mechanical loading. It is 

ossible to predict which twin will be formed by combining the 

oading analysis for preferred variants with the twinning equa- 

ion in Eq. (6) . Finally, the twinning elements and the correspond- 

ng loading condition are summarized in Table 2 . 

. Conclusions 

In conclusion, our MD simulations revealed the formation of 

artensite microstructure containing { 10 ̄1 1 } , { 10 ̄1 2 } , { 11 ̄2 2 } , and

 11 ̄2 1 } twins as a result of bcc-hcp martensitic phase transforma- 

ion. Specifically, the { 10 ̄1 1 } and { 10 ̄1 2 } twins are found as the

ransformation twins, while the { 11 ̄2 2 } and { 11 ̄2 1 } twins are in-

erited from the initial { 112 } twin in the bcc phase. The twinning

ode analysis unambiguously reveals { 10 ̄1 2 } transformation twins 

orrespond to the well-established deformation twinning modes in 

cp metals. More importantly, aided by the calculation of the de- 

ormation gradient and transformation strain, we explained that 

he { 10 ̄1 1 } transformation twin is favored by [ 1 ̄1 1 ] bcc axis ten-

ion and the { 10 ̄1 2 } transformation twin is favored by [ 001 ] bcc axis

ompression. Notably, the calculation completely agrees with our 

D simulations, revealing the critical role of mechanical loading 

n the activation of the specific transformation twinning mode. 

his new knowledge will offer a novel strategy to engineer twin 

icrostructure using designed thermomechanical processing. 
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